В чём разница между протоколами ipv4 и ipv6

В чем разница между ipv4 и ipv6

IP-адрес

Определение:
IP-адрес — уникальный сетевой адрес узла в компьютерной сети, построенной по протоколу IP.

IPv4-адрес

IPv4 использует 32-битные адреса, ограничивающие адресное пространство 4 294 967 296 (232) возможными уникальными адресами. У каждого хоста и маршрутизатора в Интеренете есть IP-адрес. IP-адрес не имеет отношения к хосту. Он имеет отношение к сетевому интерфейсу, поэтому иногда хост или маршрутизатор могут иметь несколько IP-адресов.

IP-адреса имеют иерархическую организацию. Первая часть имеет переменную длину и задает сеть, а последняя указывает на хост.

Обычно IP-адреса записываются в виде 4 десятичных чисел, каждое в диапозоне от 0 до 255, разделенными точками (dot-decimal notation). Каждая часть представляет один байт адреса. Например, шестнадцатиричный адрес 80D00297 записывается как 128.208.2.151.

Определение:
Префикс — непрерывный блок пространства IP-адресов, соответствующий сети, в которой сетевая часть совпадает для всех хостов.

Префикс задается наименьшим IP-адресом в блоке и размером блока. Размер определяется числом битов в сетевой части, оставшиеся биты в части хоста могут варьироваться. Таким образом, размер является степенью двойки. Он записывается после префикса IP-адреса в виде слэша и длины сетевой части в битах. В предыдущем примере префикс содержит 28 адресов и поэтому для сетевой части отводится 24 бита. Записывается так: 128.208.2.0/24.

Сетевые адреса, адреса интерфейсов и широковещательные адреса

IP адрес может означать одно из трех:

  • Адрес IP сети (группа IP устройств, имеющих доступ к общей среде передаче — например, все устройства в сегменте Ethernet). Сетевой адрес всегда имеет биты интерфейса (хоста) адресного пространства установленными в 0 (если сеть не разбита на подсети);
  • Широковещательный адрес IP сети (адрес для ‘разговора’ со всеми устройствами в IP сети). Широковещательные адреса для сети всегда имеют интерфейсные (хостовые) биты адресного пространства установленными в 1 (если сеть не разбита на подсети).
  • Адрес интерфейса (например Ethernet-адаптер или PPP интерфейс хоста, маршрутизатора, сервера печать итд). Эти адреса могут иметь любые значения хостовых битов, исключая все нули или все единицы — чтобы не путать с адресами сетей и широковещательными адресами.

IPv6-адрес

Адрес в IPv6 представляется как восемь групп из четырех шестнадцатеричных чисел, разделенных двоеточиями.
При записи адреса используются следующие правила:

  • Если одна и более групп, идущих подряд, равны 0000, то они опускаются и заменяются на двойное двоеточие.
  • Незначащие старшие нули в группах опускаются.
  • Для записи встроенного или отображенного IPv4 адреса последние две группы цифр заменяются на IPv4 адрес.
  • При использовании IPv6 адреса в URL он помещается в квадратные скобки.
  • Порт в URL пишется после закрывающей квадратной скобки.

Типы IPv6 адресов

  • Одноадресный (Unicast) — для отправки пакет на конкретный адрес устройства.
    • Global unicast — глобальные адреса. Могут находиться в любом не занятом диапазоне.
    • Link loсal — локальный адрес канала. Позволяет обменивать данными по одному и тому же каналу (подсети). Пакеты с локальным адресом канала не могут быть отправлены за пределы этого канала.
    • Unique local — уникальный локальные адреса. Используются для локальной адресации в пределах узла или между ограниченным количеством узлов.
  • Многоадресный (Multicast) — для отправки пакетов на группу адресов.
    • Assigned — назначенные адреса. Зарезервированные для определённых групп устройств Multicast адреса.
    • Solicited — запрошенные адреса. Остальные адреса, которые устройства могут использовать для прикладных задач.
  • Групповой (Anycast) — для отправки пакета на «любой» индивидуальный адрес. Такой адрес может быть назначен нескольким устройствам. Пакет будет доставлен ближайшему устройству с этим адресом.

Фрагментация

Большинство каналов передачи данных устанавливают максимальную длину пакета (MTU). В случае, когда длина пакета превышает это значение, происходит фрагментация.

Определение:
IP-фрагментация — разбиение пакета на множество частей, которые могут быть повторно собраны позже.

Зачем нужны две версии IP?

Несмотря на огромное количество IPv4-адресов, их недостаточно для размещения всех подключенных устройств по всему миру, особенно с появлением интернета вещей (IoT).

IPv6 способен удовлетворить потребность в большем количестве интернет-адресов. Однако, поскольку мир только начинает использовать этот протокол, IPv4 всё ещё необходим.

Несмотря на то, что многие крупные провайдеры контента, такие как и Netflix, теперь доступны через IPv6, только 19.1% (англ.) из десяти миллионов сайтов Alexa (англ.) могут быть доступны по этому протоколу. А это свидетельствует о том, что до полного внедрения IPv6 ещё предстоит пройти долгий путь.

Адресация

IPv4 идентифицирует отправителя и получателя при помощи 32-битного адреса, что ограничивает число возможных адресов 4 294 967 296. Из этого количества IPv4 резервирует специальные диапазоны адресов, называемые частными (~18 млн.) и мультикаст (~270 млн).

Адреса обычно записываются в виде четырех десятичных октетов через точку, например: 198.51.100.25 соответствует числу C633641916.

При использовании глобального пространства адресов, необходимо различать адреса, доступные в локальной физической сети, не требующие маршрутизации, и адреса, находящиеся физически в другой сети. В случае последних, пакеты направляются на маршрутизатор, который должен передать их дальше.

В первых версиях стандарта, первый октет использовался для идентификации сети, остальные – для идентификации узла. Довольно быстро стало ясно, что 256 сетей – это мало. Поэтому были введены классы сетей:

Класс Первые биты Длина адреса сети Длина адреса узла
A 8 24
B 10 16 16
C 110 24 8
D 1110 N/A N/A
E 1111 N/A N/A
Класс Начало диапазона Конец диапазона
A 0.0.0.0 127.255.255.255
B 128.0.0.0 191.255.255.255
C 192.0.0.0 223.255.255.255
D 224.0.0.0 239.255.255.255
E 240.0.0.0 255.255.255.255

Класс D зарезервирован для мультикаста, класс E – просто зарезервирован “на всякий случай”.

Длина адреса сети и длина адреса узла определялись первыми битами адреса. Примерно с 1985 года от этого тоже отказались. Причины этого в том, что многие организации требовали больше адресов, чем предоставляла сеть класса C и получали сеть класса B. Сеть класса B, однако, превышала требования организации в разы.

На смену классам сетей пришла маска сети. Это битовая маска, которая указывает, какие биты адреса относятся к сети, а какие – к узлу. По стандартному соглашению, маска должна заполняться слева направо, так, чтобы адрес сети всегда находился в старших битах. Это позволяет указывать только длину адреса сети, вместо маски сети целиком.

Например, 192.0.2.0/24 означает, что первые 24 бита (три октета) относятся к адресу сети, а остальные – к адресу узла. /24 эквивалентно маске сети 255.255.255.0.

Использование масок сетей описано в RFC 1517.

Многочисленные стандарты так же резервируют различные диапазоны адресов для специальных нужд.

Диапазон Описание RFC
0.0.0.0/8 Текущая сеть (адрес источника) 6890
10.0.0.0/8 Частная сеть 1918
100.64.0.0/10 Разделяемое адресное пространство CGN 6598
127.0.0.0/8 Loopback 6890
169.254.0.0/16 Автоконфигурация 3927
172.16.0.0/12 Частная сеть 1918
192.0.0.0/24 IETF Protocol Assignments 6890
192.0.2.0/24 Документация и примеры 1 5737
192.88.99.0/24 Релей ipv6 to ipv4 3068
192.168.0.0/16 Частная сеть 1918
198.18.0.0/15 Тестирование пропускной способности сети 2544
198.51.100.0/24 Документация и примеры 2 5737
203.0.113.0/24 Документация и примеры 3 5737
224.0.0.0/4 Мультикаст 5771
240.0.0.0/4 Зарезервировано 1700
255.255.255.255 Широковещательный запрос 919

Так же резервируются адреса узлов, в двоичном представлении состоящий из нулей (обозначает всю сеть, зарезервирован) и единиц (широковещательный запрос для данной сети).

Например, 203.0.113.0 означает (в тексте) сеть 203.0.113.0/24, а 203.0.113.255 – широковещательный запрос в эту сеть.

Протокол TCP/IPv4 без доступа к интернету

Каждый обладатель стационарного компьютера или ноутбука хотя бы однажды, но сталкивался с проблемами доступа к сети. Распространены случаи, когда все настройки произведены и параметры указаны верно, вай-фай настроен, подключение есть, а вот доступа к сети Интернет отсутствует.

В строке состояния в сетевых подключениях содержится следующая информация: IPv4 без доступа к интернету. Ниже приведена подробная инструкция, как решить проблему.

Диагностика ошибки

Протокол интернета версии 4 TCP/IPV4 диагностируется на наличие ошибок. Диагностика сетей проводится согласно следующему алгоритму:

  1. На клавиатуре одновременно нажать комбинацию клавиш «Win+R». В командной строке ввести «ncpa.cpl».
  2. Нажать ПКМ по проблемному сетевому подключению и из выпадающего списка выбрать «Состояние», далее — «Диагностика».
  3. После проведения диагностики на экране монитора должны отобразиться выявленные проблемы.

Как правило, речь идет о следующих проблемах:

  • «На этом компьютере отсутствует один или несколько сетевых протоколов».
  • «Сетевой адаптер не имеет допустимых параметров настройки IP».
  • «Параметры компьютера настроены верно, но ресурс (DNS-сервер) или устройство не отвечает».
  • «Шлюз, установленный по умолчанию, не доступен».
  • «DHCP сервер не включен на сетевом адаптере».

Как показывает практика, преимущественно сеть интернет, структура, адресация и протоколы передачи работают некорректно из-за неправильно настроенного DHCP сервера.

Обратите внимание! Проблема неправильной настройки может быть не только со стороны пользователя ПК, но и со стороны провайдера

Настройки TCP/IPv4

Прежде чем что-то торопиться исправлять, нужно убедиться, что не произошел обычный сбой Internet. В этом случае решить проблему достаточно лишь обыкновенным переподключением соединения. Для этого правой кнопкой мыши нужно кликнуть по проблемной сети и нажать «Отключить» Далее, двойным нажатием подключиться обратно. Если для создания домашней сети используется маршрутизатор, его рекомендуется перезагрузить.

Еще в качестве альтернативы можно провести сканирование настройки протокола для операционной системы Windows. Алгоритм действий при этом следующий:

  1. Правой кнопкой мыши нажать «Пуск», открыть «Командная строка (Администратор)».
  2. Прописать команду «ipconfig/all».

На экране отобразится вся актуальная информация. Нужно проверить «DHCP-сервер» и «Основной шлюз».

Важно! Если DHCP-сервер не отдает адрес шлюза (Основной шлюз 0.0.0.0) или он не активен, то настройки IPv4 необходимо вводить вручную. Изменить это удастся, следуя пошаговому плану:

Изменить это удастся, следуя пошаговому плану:

  1. Пройти путь: «Свойства» — «IP версии 4 (TCP/IPv4)».
  2. Напротив строки «использовать следующий IP-адрес» поставить метку и прописать значения:
  • Шлюз 192.168.1.1.
  • Маска подсети 255.255.255.0.
  • IP-адрес 192.168.1.2 (или любое значение в диапазоне от 2 до 254).
  1. В строке «Использовать следующие адреса DNS-серверов» установить следующие значения: Картинка6.Настройки TCPIPv4 3 пункт плана

Чтобы изменения вступили в силу, нужно не только сохранить изменения, но и перезагрузить устройство.

Настройки роутера

Если для построения домашней беспроводной сетевой инфраструктуры используется маршрутизатор, то в его настройки тоже необходимо включить DHCP сервер. Делается это следующим образом:

  1. Запустить любой браузер, установленный на ПК и в адресной строке прописать https:// 192.168.1.1 или https://192.168.0.1. Ввести пароль для идентификации в системе.
  2. В зависимости от производителя и модели маршрутизатора интерфейс будет изменить различный дизайн. В меню нужно найти и включить тип подключении «DHCP».
  3. Сохранить изменения и перезагрузить устройство.

Если перечисленные «возможности» не помогли устранить неполадку, необходимо позвонить в круглосуточную службу поддержки провайдера, который оказывает услугу.

Из каких уровней состоит TCP/IP

Пора окунуться в детали и узнать, как модель TCP/IP устроена изнутри. Глобально она делится на четыре уровня:

  • канальный уровень — отвечает за взаимодействие по сетевому оборудованию, например по Ethernet-кабелю или Wi-Fi;
  • межсетевой уровень — помогает отдельным сетям общаться друг с другом;
  • транспортный уровень — отвечает за передачу данных между устройствами, например, по протоколам TCP и UDP;
  • прикладной уровень — помогает приложениям общаться друг с другом с помощью интерфейсов или API.


Структура модели TCP/IPИллюстрация: Оля Ежак для Skillbox Media

На каждом уровне есть свои протоколы, которые обеспечивают надёжность передачи данных между компьютерами в Сети. Всего модель TCP/IP поддерживает сотни разных протоколов.

Канальный уровень

Для чего нужен: устанавливать физическое соединение между устройствами в локальной сети с помощью радиоволн и проводов.

Примеры протоколов: Ethernet, Wi-Fi, Bluetooth.

Как работает: данные делятся на небольшие кусочки (фреймы) и передаются между устройствами. Каждый фрейм содержит часть передаваемой информации и служебные данные.

Чтобы понять, куда отправлять фреймы, используют адресацию канального уровня — MAC-адреса. Это уникальные физические адреса устройств — по ним протоколы канального уровня определяют отправителей и получателей.


Из чего состоит фреймИзображение: Skillbox Media

Ещё одна важная задача канального уровня — проверять, что данные передаются безошибочно. Для этого протоколы используют свои средства проверки:

  • Если возникла ошибка, устройство отправляет фрейм обратно, а второе устройство передаёт его ещё раз.
  • Если всё прошло удачно, то фрейм передаётся на следующий уровень для обработки.

Межсетевой уровень

Для чего нужен: строить маршруты между устройствами по всему интернету — этот процесс называется маршрутизацией.

Примеры протоколов: IP, ICMP, ARP.

Как работает: IP-протокол вычисляет местонахождение устройств по их IP-адресам, а также строит до них кратчайшие пути и делит данные на пакеты (или, как говорят на юге России, — кульки :)).

Чтобы определить, где находится получатель и как построить путь к нему, IP обращается к системе DNS — она знает IP-адреса всех устройств в интернете.

Когда адрес получен, передаваемый файл разбивается на небольшие части — пакеты. Они содержат фрагменты данных и служебную информацию, например IP-адреса отправителя и получателя.


Из чего состоит пакетИзображение: Skillbox Media

После этого начинается передача пакетов по маршрутизаторам и коммутаторам. Но процессом отправки занимается уже следующий уровень — транспортный.

Транспортный уровень

Для чего нужен: передавать данные по маршруту, построенному на предыдущем уровне.

Примеры протоколов: TCP, UDP.

Как работает: устанавливает надёжное соединение между устройствами, а затем следит за передачей данных по нему и исправляет ошибки.

Главных протокола здесь два:

  • TCP (Transmission Control Protocol) — гарантирует передачу всех данных без потерь. Полезен при отправке текстовых файлов.
  • UDP (User Datagram Protocol) — не гарантирует передачу данных без потерь, но обеспечивает хорошую скорость. Полезен при просмотре видео или прослушивании музыки в интернете.


TCP решает всё медленно, но надёжно. UDP — быстро, но не факт, что качественноИллюстрация: Оля Ежак для Skillbox Media

И у нас остаётся последний уровень — прикладной.

Прикладной уровень

Для чего нужен: настраивать связи между приложениями — например, между браузером и серверным софтом.

Примеры протоколов: HTTP, FTP, SMTP.

Как работает: использует различные протоколы и сервисы, которые помогают приложениям обмениваться данными по интернету.

На прикладном уровне хранятся протоколы для всего, что нужно человеку: отправки имейлов, веб-браузинга, передачи файлов и удалённого доступа. Вот некоторые из них:

  • HTTP (Hypertext Transfer Protocol) — самый популярный протокол для передачи данных по интернету.
  • FTP (File Transfer Protocol) — ещё один известный протокол, заточенный под передачу файлов.
  • SMTP (Simple Mail Transfer Protocol) — протокол для отправки электронных писем.
Понравилась статья? Поделиться с друзьями:
X-zoom
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: